Dictionary Definition
seed
Noun
1 a small hard fruit
2 a mature fertilized plant ovule consisting of
an embryo and its food source and having a protective coat or
testa
3 one of the outstanding players in a tournament
[syn: seeded
player]
5 the thick white fluid containing spermatozoa
that is ejaculated by the male genital tract [syn: semen, seminal
fluid, ejaculate,
cum]
Verb
1 go to seed; shed seeds; "The dandelions went to
seed"
2 help (an enterprise) in its early stages of
development by providing seed money
3 bear seeds
4 place (seeds) in or on the ground for future
growth; "She sowed sunflower seeds" [syn: sow, sough]
5 distribute (players or teams) so that
outstanding teams or players will not meet in the early
rounds
6 sprinkle with silver iodide particles to
disperse and cause rain; "seed clouds"
7 inoculate with microorganisms
8 remove the seeds from; "seed grapes"
User Contributed Dictionary
English
Etymology
sǣd, sēd, from Germanic *sædh- ‘that which can be sown’. Cognate with Dutch zaad, German Saat, Swedish säd. Related to sow.Pronunciation
- , /siːd/
- Rhymes with: -iːd
Adjective
- Held in reserve for future growth.
- seed money
- Don’t eat your seed corn
- seed money
- First.
The initial state, condition or position of a changing, growing or
developing process; the ultimate precusor in a defined
chain of precusors.
- What was the seed number that initiated the sequence of values?
- The qualifying match determines the seed position one will have in the final competition.
- What was the seed number that initiated the sequence of values?
- A precursor,
especially in a process without a defined initial state.
- What was the seed idea behind your scheme?
- Use your profits as seed money for your next venture.
- What was the seed idea behind your scheme?
Translations
Held in reserve for future growth
Noun
- A fertilized
grain, initially encased
in a fruit, which may grow
into a mature plant.
- If you plant a seed in the spring, you may have a pleasant surprise in the autumn.
- In the context of "countable|botany": A fertilized ovule, containing an embryonic plant.
- An amount of fertilized grain that cannot be readily counted.
- The entire field was covered with geese eating the freshly sown seed.
- Semen.
- Sometimes a man may feel encouraged to spread his seed before he settles down to raise a family.
- A precursor.
- The seed of an idea. Which idea was the seed (idea)?
- The initial state, condition or position of a changing, growing
or developing process; the ultimate precusor in a defined
chain of precusors.
- The initial position of a competitor or team in a tournament.
(seed position)
- The team with the best regular season record receives the top seed in the conference tournament.
- The competitor or team occupying a given seed. (seed position)
- The rookie was a surprising top seed.
- Initialization state of a
pseudorandom number generator (PRNG). (seed number)
- If you use the same seed you will get exactly the same pattern of numbers.
- Commercial message in a creative format placed on relevant
sites on the Internet. (seed idea or seed message)
- The latest seed has attracted a lot of users in our online community.
- The initial position of a competitor or team in a tournament.
(seed position)
Usage notes
The common use of seed differs from the botanical use. The “seeds” of sunflowers and strawberries are botanically fruits.Derived terms
Translations
fertilized grain
- trreq Albanian
- Arabic:
- Bulgarian: семе
- Chinese: 種子, 种子 (zhǒngzi)
- Czech: semeno
- Dutch: zaad
- Finnish: siemen
- French: semence, graine
- German: Same, Samen, Saat
- Greek: σπόρος
- trreq Hebrew
- Hungarian: mag
- Italian: seme
- Japanese: 種 (たね, táne)
- Korean: 씨 (ssi) 씨앗 (ssiat)
- Kurdish:
- Sorani: تۆم, دان
- Latin: semen
- Persian: تخم
- Polish: nasienie , nasionko
- Portuguese: semente
- Russian: семя, семена
- Slovene: seme
- Spanish: semilla
- Swahili: mbegu
- Swedish: frö
- Telugu: విత్తనం (vittanaM)
- Turkish: tohum
- Vietnamese: hột, hạt
semen
initial position of a competitor
competitor or team occupying a given seed
Verb
- To plant or sow an area with seeds.
- I seeded my lawn with bluegrass.
- To start; to provide,
assign or determine the initial resources for, position
of, state of.
- A venture captialist seeds young companies.
- The tournament coordinator will seed the starting lineup with the best competitors from the qualifying round.
- This marketing company successfully seeds viral campaigns using media meshing.
- The programmer seeds fresh, uncorrupted data into the database before running unit tests.''
- The tournament coordinator will seed the starting lineup with the best competitors from the qualifying round.
- A venture captialist seeds young companies.
Translations
to plant or sow seeds
- Polish: siać
- Portuguese: semear
- Spanish: sembrar
to provide initial resources for
assign a position to in a tournament
Extensive Definition
A seed (in some plants, referred to as a kernel)
is a small embryonic
plant enclosed in a
covering called the seed coat, usually with some stored food.
It is the product of the ripened ovule of gymnosperm and angiosperm plants which
occurs after fertilization and some
growth within the mother plant. The formation of the seed completes
the process of reproduction in seed plants
(started with the development of flowers and pollination), with the
embryo developed from the
zygote and the seed coat from
the integuments of the ovule.
Seeds have been an important development in the
reproduction and spread of flowering
plants, relative to more primitive plants like mosses, ferns and liverworts, which do not
have seeds and use other means to propagate themselves. This can be
seen by the success of seed plants (both gymnosperms and
angiosperms) in dominating biological niches
on land, from forests to
grasslands both in hot
and cold climates.
The term seed also has a general meaning that
predates the above — anything that can be sown i.e. "seed"
potatoes, "seeds" of
corn or sunflower
"seeds". In the case of sunflower and corn "seeds",
what is sown is the seed enclosed in a shell or hull, and the
potato is a tuber.
Seed structure
A typical seed includes three basic parts: (1) an embryo, (2) a supply of nutrients for the embryo, and (3) a seed coat.The embryo is an immature plant from which a new plant will
grow under proper conditions. The embryo has one cotyledon or seed leaf in
monocotyledons,
two cotyledons in almost all dicotyledons and two or more
in gymnosperms. The radicle is the embryonic root.
The plumule is the embryonic shoot. The embryonic stem above the
point of attachment of the cotyledon(s) is the epicotyl. The embryonic stem
below the point of attachment is the hypocotyl.
Within the seed, there usually is a store of
nutrients for the
seedling that will grow
from the embryo. The form of the stored nutrition varies depending
on the kind of plant. In angiosperms, the stored food begins as a
tissue called the endosperm, which is derived
from the parent plant via double
fertilization. The usually triploid endosperm is rich in
oil
or starch and protein. In gymnosperms, such as
conifers,
the food storage tissue is part of the female gametophyte, a
haploid tissue. In some species, the embryo is embedded in the
endosperm or female gametophyte, which the seedling will use upon
germination. In
others, the endosperm is absorbed by the embryo as the latter grows
within the developing seed, and the cotyledons of the embryo become
filled with this stored food. At maturity, seeds of these species
have no endosperm and are termed exalbuminous seeds. Some
exalbuminous seeds are bean, pea, oak, walnut, squash,
sunflower, and
radish. Seeds with an
endosperm at maturity are termed albuminous seeds. Most monocots
(e.g. grasses and
palms)
and many dicots (e.g. brazil nut and
castor
bean) have albuminous seeds. All gymnosperm seeds are
albuminous.
The seed coat (or testa) develops from the
tissue, the integument, originally surrounding the ovule. The seed
coat in the mature seed can be a paper-thin layer (e.g. peanut) or something more
substantial (e.g. thick and hard in honey locust
and coconut). The seed
coat helps protect the embryo from mechanical injury and from
drying out.
In addition to the three basic seed parts, some
seeds have an appendage on the seed coat such an aril (as in yew and nutmeg) or an elaiosome (as in Corydalis) or
hairs (as in cotton).
There may also be a scar on the seed coat, called the hilum; it is
where the seed was attached to the ovary wall by the funiculus.
Seed production
Seeds are produced in several related groups of plants, and their manner of production distinguishes the angiosperms ("enclosed seeds") from the gymnosperms ("naked seeds"). Angiosperm seeds are produced in a hard or fleshy (or with layers of both) structure called a fruit that encloses the seeds, hence the name. In gymnosperms, no special structure develops to enclose the seeds, which begin their development "naked" on the bracts of cones. However, the seeds do become covered by the cone scales as they develop in some species of conifer.Kinds of seeds
There are a number of modifications to seeds by different groups of plants. One example is that of the so-called stone fruits (such as the peach), where a hardened fruit layer ( the endocarp) surrounds the actual seed and is fused to it.Many structures commonly referred to as "seeds"
are actually dry fruits.
Sunflower
seeds are sold commercially while still enclosed within the hard
wall of the fruit, which must be split open to reach the
seed.
Seed development
The seed, which is an embryo with two points of
growth (one of which forms the stems the other the roots) is
enclosed in a seed coat with some food reserves. Angiosperm seeds
consist of three genetically distinct constituents: (1) the embryo
formed from the zygote, (2) the endosperm, which is normally
triploid, (3) the seed coat from tissue derived from the maternal
tissue of the ovule. In angiosperms, the process of seed
development begins with double
fertilization and involves the fusion of the egg and sperm
nuclei into a zygote. The second part of this process is the fusion
of the polar nuclei with a second sperm cell nucleus, thus forming
a primary endosperm.
Right after fertilization the zygote is mostly inactive but the
primary endosperm divides rapidly to form the endosperm tissue.
This tissue becomes the food that the young plant will consume
until the roots have developed after germination or it develops
into a hard seed coat. The seed coat forms from the two integuments
or outer layers of cells of the ovule, which derive from tissue
from the mother plant, the inner integument forms the tegmen and the outer forms the
testa. When the seed coat forms from only one layer it is also
called the testa, though not all such testa are homologous from one species
to the next.
In gymnosperms, the two sperm cells transferred
from the pollen do not develop seed by double fertilization but
instead only one sperm fertilizes the egg while the other is not
used. The seed is composed of the embryo (the result of
fertilization) and tissue from the mother plant, which also form a
cone around the seed in coniferous plants like Pine and Spruce.
The ovules after fertilization develop into the
seeds; the main parts of the ovule are the funicle; which attaches the
ovule to the placenta, the nucellus; the main region of
the ovule were the embryo sac develops, the micropyle; A small pore or
opening in the ovule where the pollen tube usually enters during
the process of fertilization, and the chalaza; the base of the ovule
opposite the micropyle, where integument and nucellus are joined
together.
The shape of the ovules as they develop often
affects the finale shape of the seeds. Plants generally produce
ovules of four shapes: the most common shape is called anatropous,
with a curved shape. Orthotropous ovules are straight with all the
parts of the ovule lined up in a long row producing an uncurved
seed. Campylotropous ovules have a curved embryo sac often giving
the seed a tight “c” shape. The last ovule shape is called
amphitropous, where the ovule is partly inverted and turned back 90
degrees on its stalk or funicle.
In the majority of flowering plants the zygotes
first division is transversely orientated in regards to the long
axis and this establishes the polarity of the embryo. The upper or
chalazal pole becomes the main area of growth of the embryo, while
the lower or micropylar pole produces the stalk-like suspensor that
attaches to the micropyle. The suspensor absorbs and manufacturers
nutrients from the endosperm that are utilized during the embryos
growth.
The embryo is composed of different parts; the
epicotyle will grow into the shoot, the radicle grows into the
primary root, the hypocotyl connects the epicotyle and the radicle,
the cotyledons form the seed leaves, the testa or seed coat forms
the outer covering of the seed. Monocotyledonous plants like corn,
have other structures; instead of the hypocotyle-epicotyle, it has
a coleoptile that forms the first leaf and connects to the
coleorhiza that connects to the primary root and adventitious roots form
from the sides. The seeds of corn are constructed with these
structures; pericarp, scutellum (single large cotyledon) that
absorbs nutrients from the endosperm, endosperm, plumule, radicle,
coleoptile and coleorhiza - these last two structures are
sheath-like and enclose the plumule and radicle, acting as a
protective covering. The testa or seed coats of both monocots and
dicots are often marked with patterns and textured markings, or
have wings or tufts of hair.
Seed size and seed set
Seeds are very diverse in size. The dust-like orchid seeds are the smallest with about one million seeds per gram. Embryotic seeds have immature embryos and no significant energy reserves. They are myco-heterotrophs, depending on mycorrhizal fungi for nutrition during germination and the early growth of the seedling, in fact some terrestrial Orchid seedlings spend the first few years of their life deriving energy from the fungus and do not produce green leaves. At over 20 kg, the largest seed is the coco de mer. Plants that produce smaller seeds can generate many more seeds while plants with larger seeds invest more resources into those seeds and normally produce fewer seeds. Small seeds are quicker to ripen and can be dispersed sooner, so fall blooming plants often have small seeds. Many annual plants produce great quantities of smaller seeds; this helps to ensure that at least a few will end in a favorable place for growth. Herbaceous perennials and woody plants often have larger seeds, they can produce seeds over many years, and larger seeds have more energy reserves for germination and seedling growth and produce larger, more established seedlings.Seed functions
Seeds serve several functions for the plants that produce them. Key among these functions are nourishment of the embryo, dispersal to a new location, and dormancy during unfavorable conditions. Seeds fundamentally are a means of reproduction and most seeds are the product of sexual reproduction which produces a remixing of genetic material and phenotype variability that natural selection acts on.Embryo nourishment
Seeds protect and nourish the embryo or baby plant. Seeds usually give a seedling a faster start than a sporling from a spore gets because of the larger food reserves in the seed.Seed dispersal
Unlike animals, plants are limited in their ability to seek out favorable conditions for life and growth. As a consequence, plants have evolved many ways to disperse their offspring by dispersing their seeds (see also vegetative reproduction). A seed must somehow "arrive" at a location and be there at a time favorable for germination and growth. When the fruits open and release their seeds in a regular way, it is called dehiscent, which is often distinctive for related groups of plants, these fruits include; Capsules, follicles, legumes, silicles and siliques. When fruits do not open and release their seeds in a regular fashion they are called indehiscent, which include these fruits; Achenes, caryopsis, nuts, samaras, and utricles.Seed dispersal is seen most obviously in fruits;
however many seeds aid in their own dispersal. Some kinds of seeds
are dispersed while still inside a fruit or cone, which
later opens or disintegrates to release the seeds. Other seeds are
expelled or released from the fruit prior to dispersal. For
example, milkweeds
produce a fruit type, known as a follicle,
that splits open along one side to release the seeds. Iris
capsules
split into three "valves" to release their seeds.
By wind (anemochory)
By water (hydrochory)
By animals (zoochory)
- Seeds (burrs) with barbs or hooks (e.g. acaena, burdock, dock which attach to animal fur or feathers, and then drop off later.
- Seeds with a fleshy covering (e.g. apple, cherry, juniper) are eaten by animals (birds, mammals) which then disperse these seeds in their droppings.
- Seeds (nuts) which are an attractive long-term storable food resource for animals (e.g. acorns, hazelnut, walnut); the seeds are stored some distance from the parent plant, and some escape being eaten if the animal forgets them.
Myrmecochory
is the dispersal of seeds by ants. Foraging ants disperse seeds
which have appendages called elaiosomes (e.g. bloodroot, trilliums, Acacias, and many
species of Proteaceae).
Elaiosomes are soft, fleshy structures that contain nutrients for
animals that eat them. The ants carry such seeds back to their
nest, where the elaiosomes are eaten. The remainder of the seed,
which is hard and inedible to the ants, then germinates either
within the nest or at a removal site where the seed has been
discarded by the ants. This dispersal relationship is an example of
mutualism, since the
plants depend upon the ants to disperse seeds, while the ants
depend upon the plants seeds for food. As a result, a drop in
numbers of one partner can reduce success of the other. In South
Africa, the Argentine
ant (Linepithema humile) has invaded
and displaced native species of ants. Unlike the native ant
species, Argentine ants do not collect the seeds of Mimetes
cucullatus or eat the elaiosomes. In areas where these ants
have invaded, the numbers of Mimetes seedlings have dropped.
Seed dormancy and protection
further Seed hibernationOne important function of most seeds is delaying
germination, which allows time for dispersal and prevents
germination of all the seeds at one time when conditions appear
favorable. The staggering of germination safeguards some seeds or
seedlings from suffering during short periods of bad weather,
transient herbivores or competition from other plants for light and
nutrients. Many species of plants have seeds that germinate over
many months or years, and some seeds can remain in the soil seed
bank for more than 50 years before germination. Seed
dormancy is defined as a seed failing to germinate under
environmental conditions optimal for germination, normally when the
seed's environment is at the right temperature with proper soil
moisture conditions. Induced dormancy or seed quiescence occurs
when a seed fails to germinate because the external environmental
conditions are inappropriate for germination, mostly in response to
being too cold or hot, or too dry. True dormancy or innate dormancy
is caused by conditions within the seed that prevent germination
under normally ideal conditions. Often seed dormancy is divided
into four major categories: exogenous; endogenous; combinational;
and secondary.
Exogenous dormancy is caused by conditions
outside the embryo including:
- Hard seed coats or physical dormancy occurs when seeds are impermeable to water or the exchange of gases. In some seeds the seed coat physically prevents the seedling from growing.
- Chemical dormancy includes growth regulators etc.
- Immature embryos where some plants release their seeds before the tissues of the embryos have fully differentiated, and the seeds ripen after they take in water while on the ground, germination can be delayed from a few weeks to a few months.
- Morphological dormancy where seeds have fully differentiated embryos that need to grow more before seed germination, the embryos are not yet fully developed.
- Morphophysiological dormancy seeds with underdeveloped embryos, and in addition have physiological components to dormancy. These seeds therefore require a dormancy-breaking treatments as well as a period of time to develop fully grown embryos.
- Physiological dormancy prevents seed germination until the
chemical inhibitors are broken down or are no longer produced by
the seed, often physiological dormancy is broken by a period of
cool moist conditions, normally below (+4C) 39F, or in the case of
many species in Ranunculaceae
and a few others,(-5C) 24F. Other chemicals that prevent
germination are washed out of the seeds by rainwater or snow melt.
Abscisic
acid is usually the growth inhibitor in seeds and its
production can be affected by light. Some plants like Peony species have
multiple types of physiological dormancy, one affects radical
growth while the other affects shoot growth.
- Drying; some plants including a number of grasses and those from seasonally arid regions need a period of drying before they will germinate, the seeds are released but need to have a lower moister content before germination can begin. If the seeds remain moist after dispersal, germination can be delayed for many months or even years. Many herbaceous plants from temperate climate zones have physiological dormancy that disappears with drying of the seeds. Other species will germinate after dispersal only under very narrow temperature ranges, but as the seeds dry they are able to germinate over a wider temperature range.
- Photodormancy or light sensitivity affects germination of some seeds. These photoblastic seeds need a period of darkness or light to germinate. In species with thin seed coats, light may be able to penetrate into the dormant embryo. The presence of light or the absence of light may trigger the germination process, inhibiting germination in some seeds buried too deeply or in others not buried in the soil.
- Thermodormancy is seed sensitivity to heat or cold. Some seeds including cocklebur and amaranth germinate only at high temperatures (30C or 86F) many plants that have seed that germinate in early to mid summer have thermodormancy and germinate only when the soil temperature is warm. Other seeds need cool soils to germinate, while others like celery are inhibited when soil temperatures are too warm. Often thermodormancy requirements disappear as the seed ages or dries.
Combinational dormancy also called double
dormancy. Many seeds have more than one type of dormancy, some
Iris
species have both hard impermeable seeds coats and physiological
dormancy.
Secondary dormancy is caused by conditions after
the seed has been dispersed and occurs in some seeds when
non-dormant seed is exposed to conditions that are not favorable to
germination, very often high temperatures. The mechanisms of
secondary dormancy are not yet fully understood but might involve
the loss of sensitivity in receptors in the plasma membrane. Many
garden plants have seeds that will germinate readily as soon as
they have water and are warm enough, though their wild ancestors
may have had dormancy, these cultivated plants lack seed dormancy.
After many generations of selective pressure by plant breeders and
gardeners dormancy has been selected out.
For annuals,
seeds are a way for the species to survive dry or cold seasons.
Ephemeral plants are usually annuals that can go from seed to seed
in as few as six weeks.
Not all seeds undergo a period of dormancy. Seeds
of some mangroves are
viviparous, they begin to germinate while still attached to the
parent. The large, heavy root allows the seed to penetrate into the
ground when it falls.
Seed germination
Seed germination is the process of growth of the embryo into a functional plant. It involves the reactivation of the metabolic pathways that lead to growth and the emergence of the radicle or seed root and plumule or shoot.Three fundamental conditions must exist before
germination can occur. (1) The embryo must be alive, called seed
viability. (2) Any dormancy requirements that prevent germination
must be over come. (3) The proper environmental conditions must
exist for germination.
Seed viability determines the percentage of
possible seed germination and is affected by a number of different
conditions. Some plants do not produce seeds that have functional
complete embryos or the seed may have no embryo at all, often
called empty seeds. Predators and pathogens can damage or kill the
seed while it is still in the fruit or after it is dispersed.
Environmental conditions like flooding or heat can kill the seed
before or during germination. The age of the seed affects its
health and germination ability, since the seed has a living embryo,
over time cells die and cannot be replaced. Some seeds can live for
a long time before germination, while others can only survive for a
short period after dispersal before they die.
Seed vigor is a measure of the quality of seed,
and involves the viability of the seed, the germination percentage,
germination rate and the strength of the seedlings produced.
The germination percentage is simply the
proportion of seeds that germinate from all seeds subject to the
right conditions for growth. The germination rate is the length of
time it takes for the seeds to germinate. Germination percentages
and rates are affected by seed viability, dormancy and
environmental effects that impact on the seed and seedling. In
agriculture and horticulture quality seeds have high viability,
measured by germination percentage plus the rate of germination.
This is given as a percent of germination over a certain amount of
time, 90% germination in 20 days, for example. 'Dormancy' is
covered above; many plants produce seeds with varying degrees of
dormancy, and different seeds from the same fruit can have
different degrees of dormancy. It's possible to have seeds with no
dormancy if they are dispersed right away and do not dry (if the
seeds dry they go into physiological dormancy). There is great
variation amongst plants and a dormant seed is still a viable seed
even though the germination rate might be very low.
Environmental conditions effecting seed
germination include; water, oxygen, temperature and light.
Three distinct phases of seed germination occur:
water imbibition; lag phase; and radicle emergence.
In order for the seed coat to split, the embryo
must imbibe (soak up water), which causes it to swell, splitting
the seed coat. However, the nature of the seed coat determines how
rapidly water can penetrate and subsequently initiate germination. The rate of
imbibition is dependent on the permeability of the seed coat,
amount of water in the environment and the area of contact the seed
has to the source of water. For some seeds, imbibing to much water
to quickly can kill the seed. For some seeds, once water is imbibed
the germination process can not be stopped and if the seed dries
out again it is fatal. While other species have seeds that can
imbibe and lose water a few times with out causing ill effects to
the seed or drying can cause secondary dormancy.
Inducing germination
A number of different strategies are used by gardeners and horticulturists to break seed dormancy.Scarification of hard seed coats involving the
breaking, scratching or softening by chemicals like acids. Other
means of scarification include soaking in hot water or poking holes
in the seed with a pin. Sometimes fruits are harvested while the
seeds are still immature and the seed coat is not fully developed
and sown right away. Under natural conditions the seed coats can be
broken by rodents chewing on the seeds, rubbing against rocks or
freezing and thawing of surface water, battering on rocks in a
stream-bed, or passing through an animal's digestive tract. In the
latter case, the seed coat protects the seed from digestion, while perhaps
weakening the seed coat such that the embryo is ready to sprout
when it gets deposited (along with a bit of fertilizer) far from
the parent plant. Microorganisms
are often effective in breaking down hard seed coats and are
sometimes used by people as a treatment, the seeds are stored in a
moist warm sandy medium for several months under non-sterile
conditions.
Stratification also called moist-chilling is a
method to break down physiological dormancy and involves the
addition of moisture to the seeds so they imbibe water and then the
seeds are subject to a period of moist chilling to after-ripen the
embryo. Sowing outside in late summer and fall and allowing to
overwinter outside under cool conditions is an effective way to
stratify seeds, some seeds respond more favorably to periods of
osculating temperatures which are part of the natural
environment.
Leaching or the soaking in water removes chemical
inhibitors in some seeds that prevent germination. Rain and melting
snow naturally accomplish
this task. For seeds that are going to be planted for gardens, the
use of running water is best but frequent changes of water are
effective too. Normally 12 to 24 hours of soaking is sufficient,
longer soaking especially in stagnant water that is not changed can
result in oxygen starvation and seed death. Seeds with hard seed
coats can be soaked in hot water to break open the impermeable cell
layers that prevent water intake.
Other methods used to assist in the germination
of seeds that have dormancy include prechilling, predrying, daily
alternation of temperature, light exposure, potassium nitrate, the
use of plant growth regulators like gibberellins, cytokinins,
ethylene, thiourea, sodium hypochlorite plus others.
Origin and evolution
The origin of seed plants is a problem that still remains unsolved. However, more and more data tends to place this origin in the middle Devonian. The description in 2004 of the proto-seed Runcaria heinzelinii in the Givetian of Belgium is an indication of that ancient origin of seed-plants. As with modern ferns, most land plants before this time reproduced by sending spores into the air, that would land and become whole new plants.The first "true" seeds are described from the
upper Devonian, which is probably the theater of their true first
evolutionary radiation. The seed plants progressively became one of
the major elements of nearly all ecosystems.
Economic importance
Edible seeds
further List of edible seedsMany seeds are edible
and the majority of human calories comes from seeds, especially
from cereals, legumes and nuts. Seeds
also provide most cooking oils,
many beverages and
spices and some important
food
additives. In different seeds the
seed embryo or the endosperm dominates and
provides most of the nutrients. The storage proteins of the embryo and
endosperm differ in their amino acid
content and physical properties. For example the gluten of wheat, important in
providing the elastic
property to bread dough is
strictly an endosperm protein.
Seeds are used to propagate many crops such as
cereals, legumes, forest
trees, turfgrasses
and pasture
grasses.
Poison and food safety
While some seeds are considered by some as healthy to eat, other seeds may be harmful or poisonous, Plants and seeds often contain chemical compounds to discourage herbivores and seed predators. In some cases, these compounds simply taste bad (such as in mustard), but other compounds are toxic, or breakdown into toxic compounds within the digestive system. Children, being smaller than adults, are more susceptible to poisoning or death by plants and seeds. One should be satisfied with reliable food safety information before choosing to eat any particular seeds.An infamously deadly poison, ricin, comes from seeds of the
castor
bean. Reported lethal doses are anywhere from two to eight
seeds, though only a few deaths have been reported when castor
beans have been ingested by animals.
In addition, seeds containing amygdalin; apple, apricot, bitter
almond, peach,
plum, cherry, quince, and others, when consumed
in significant amounts, may result in cyanide toxicity Other seeds
than contain poisons include annona, cotton, custard
apple, datura,
uncooked durian, golden
chain, horse-chestnut,
larkspur,
locoweed, lychee, nectarine, rambutan, rosary pea,
sour
sop, sugar apple,
wisteria, and yew. Another seed
poison is strychnine.
The seeds of many legumes, including the common
bean (Phaseolus
vulgaris) contain proteins called lectins which can cause gastric
distress if the beans are eaten without cooking. The common bean and
many others, including the soybean, also contain trypsin
inhibitors which interfere with the action of the digestive
enzyme trypsin. Normal
cooking processes degrade lectins and trypsin inhibitors to
harmless forms.
Other uses
The world's most important clothing fiber grows attached to cotton seed. Other seed fibers are from kapok and milkweed.Many important nonfood oils are extracted from
seeds. Linseed oil
is used in paints. Oil from jojoba and crambe are similar to whale
oil.
Seeds are the source of some medicines including
castor
oil, tea tree
oil and the discredited cancer drug, Laetrile.
Many seeds have been used as beads in necklaces and rosaries
including Job's tears,
Chinaberry and
rosary
pea. However, the latter two are also poisonous.
Other seed uses include:
- Seeds once used as weights for balances.
- Seeds used as toys by children, such as for the game conker.
- Resin from Clusia rosea seeds used to caulk boats.
- Nematicide from milkweed seeds.
- Cottonseed meal used as animal feed and fertilizer.
Trivia
- The oldest viable carbon-14-dated seed that has grown into a plant was a Judean date palm seed about 2,000 years old, recovered from excavations at Herod the Great's palace on Masada in Israel. It was germinated in 2005.
- The largest seed is produced by the coco de mer, or "double coconut palm", Lodoicea maldivica. The entire fruit may weigh up to 23 kilograms (50 pounds) and usually contains a single seed.
- The earliest fossil seeds are around 365 million years old from the Late Devonian of West Virginia. The seeds are preserved immature ovules of the plant Elkinsia polymorpha.
See also
References
External links
- List of Common Botanical Seed Names
- The Seed Site: collecting, storing, sowing, germinating, and exchanging seeds, with pictures of seeds, seedpods and seedlings.
- The Seed Biology Place seed structure, dormany, evolution, ecology, etc.
- Flavon's Secret Flower Garden - Pictures of Japanese plant seeds, fruits and etc.
- The Millennium Seed Bank Project Kew Garden's ambitious preservation project
- The Svalbard Global Seed Vault - a backup facility for the world's seed banks
seed in Arabic: بذرة
seed in Aragonese: Simién
seed in Asturian: Semiente
seed in Aymara: Jatha
seed in Min Nan: Chí
seed in Bulgarian: Семе
seed in Catalan: Llavor
seed in Czech: Semeno
seed in Danish: Frø (plantedel)
seed in German: Same (Pflanze)
seed in Spanish: Semilla
seed in Esperanto: Semo
seed in French: Graine
seed in Korean: 씨
seed in Hindi: बीज
seed in Croatian: Sjeme
seed in Indonesian: Biji
seed in Italian: Seme
seed in Hebrew: זרע (בוטניקה)
seed in Lithuanian: Sėkla
seed in Hungarian: Mag
seed in Dutch: Zaad (plant)
seed in Dutch Low Saxon: Zaod (plaante)
seed in Japanese: 種子
seed in Norwegian: Frø
seed in Norwegian Nynorsk: Frø
seed in Polish: Nasienie (botanika)
seed in Portuguese: Semente
seed in Romanian: Sămânţă
seed in Quechua: Muru
seed in Russian: Семя (ботаника)
seed in Sicilian: Simenta
seed in Simple English: Seed
seed in Slovenian: Seme
seed in Serbian: Семе
seed in Serbo-Croatian: Sjeme
seed in Sundanese: Siki
seed in Finnish: Siemen
seed in Swedish: Frö
seed in Turkish: Tohum
seed in Ukrainian: Насіння
(рослинознавство)
seed in Venetian: Sémi
seed in Chinese: 種子
Synonyms, Antonyms and Related Words
Anlage,
acorn, affiliation, androcyte, antheridium, antherozoid, apparentation, basis, bed, berry, bird seed, birth, blood, bloodline, branch, breed, broadcast, brood, bud, bulb, cause, children, common ancestry,
conceit, concept, conception, consanguinity, core, corm, decay, decline, degenerate, derivation, descendants, descent, deteriorate, dibble, direct line, disseminate, distaff side,
distribute, drill, egg, embryo, extraction, family, female line, filiation, flaxseed, forest, fruit, germ, germen, go downhill, go to pot,
grain, grandchildren,
great-grandchildren, grounds, hayseed, heirs, hostages to fortune,
house, image, implant, impression, inheritors, inseminate, issue, kernel, kids, line, line of descent, lineage, linseed, little ones, loins, male gamete, male line,
milt, motivation, motive, new generation, notion, nucleus, nut, offspring, origin, ovule, ovum, phylum, pip, pit, pitch, plant, pollen, posterity, pot, progeniture, progeny, protein, provocation, put in,
race, reason, reforest, reset, retimber, rising generation,
root, rudiment, run down, scatter, scatter seed, scum, seed down, semen, seminal fluid, seminate, sept, set, side, sons, source, sow, sow broadcast, spark, spear side, sperm, sperm cell, spermagonium, spermatic
fluid, spermatid,
spermatiophore,
spermatium, spermatocyte, spermatogonium, spermatophore, spermatozoa, spermatozoid, spermatozoon, spindle side,
spore, stem, stirps, stock, stone, strain, succession, successors, sword side,
transplant, treasures, tuber, young, younglings, youngsters